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Hensel and Newton Methods in Valuation Rings 

By Joachim von zur Gathen 

Abstract. We give a computational description of Hensel's method for lifting approximate 
factorizations of polynomials. The general setting of valuation rings provides the framework 
for this and the other results of the paper. We describe a Newton method for solving algebraic 
and differential equations. Finally, we discuss a fast algorithm for factoring polynomials via 
computing short vectors in modules. 

1. Introduction. Hensel and Newton methods have received quite a lot of attention 
in algebraic computing. We present them in their natural framework, that of 
valuation rings. The Hensel method deals with factorization of polynomials, the 
Newton method with zeros of polynomials over the given valuation ring. ,Both 
methods take an approximate solution and produce a new approximation which is 
better with respect to the given valuation. Apart from the pioneering paper by 
Zassenhaus [1969], these methods have usually only been treated in the setting of 
either the integers or a polynomial ring, thus requiring separate proofs for each case. 
The unified treatment avoids this, and incidentally obtains the Newton method as a 
special case of the Hensel method, also giving the aesthetical advantage of avoiding 
rational functions for the important application of inverting power series. 

The Hensel method presented in Section 2 describes a lifting of an approximate 
factorization of a given polynomial over a valuation ring, where the factors are 
approximately relatively prime. It results in two choices of an iterative procedure, 
one with linear and one with quadratic convergence behavior. It allows us to 
describe the factorization of certain polynomials that are not squarefree over the 
residue class field, a case not covered by the usual formulation. 

In Section 3, we present a Newton method for solving differential equations for 
formal power series in several variables, in the general case of systems of nonlinear 
partial differential equations. This includes the case of a system of algebraic 
equations. One obtains a simple condition which provides an iterative procedure to 
compute a solution. 

In Section 4, we discuss an important recently discovered tool for factoring 
polynomials: computing short vectors in modules over (valuation) rings. This tool 
has been introduced by Lenstra-Lenstra-Lovasz [1982] for factoring univariate 
integer polynomials, used in Chistov-Grigoryev [1982], Lenstra [1983] for multi- 
variate polynomials over finite fields, and in Lenstra [1983a] for multivariate integer 
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polynomials. Although to date the short vector algorithm provides the only worst-case 
polynomial-time factoring procedure for univariate integer polynomials, older algo- 
rithms, based on Berlekamp [1970] and Zassenhaus [1969], perform well in practice. 
For multivariate polynomials, the competition is between the short vector approach, 
a different method due to Kaltofen [1982] (see Kaltofen [1983], von zur Gathen- 
Kaltofen [1983]) which is also polynomial-time in the worst-case, and older algo- 
rithms (e.g., Musser [1975], Wang [1978], Zippel [1981]) which may require exponen- 
tial time in some cases. For the case of sparse polynomials-of great practical 
importance- a different approach is necessary (von zur Gathen [1983]). 

In Section 4, we present a short vector algorithm in the case of non-Archimedean 
valuations. This yields, in the final section, an algorithm for factoring univariate 
polynomials over a ring with sufficient valuations. Special cases of this algorithm 
include univariate polynomials over Q and bivariate polynomials over a finite field. 

The benefit of this unified approach is twofold: it puts the intuitively apparent 
relation between the different cases into a precise framework, and it clarifies in an 
"axiomatic" sense which structures are needed to make the algorithm work. 

2. Hensel's Lemma. By the standard definition, a valuation v: R -* R, where R is 
an integral domain (commutative, with 1), satisfies for all a, b E R: 

(i) v(a)> 0, 
(ii) v(a) = 0 a = 0, 

(iii) v(ab) = v(a)v(b), 

(iv) v(a + b) < v(a) + v(b). 
v is called non-Archimedean if 

(iv)' v(a + b) < max{v(a), v(b)). 
For elementary properties of valuations, see, e.g., van der Waerden [1970, Chapter 
18]. 

2.1. Definition. A ring R with a valuation v: R -, R + is called a Hensel ring if 

(i) Va E- R v(a) < 1, 
(ii) Va, b e R Ve > 0 3c E R such that (v(a) < v(b) * v(a - bc) < 

In other words, R is Hensel if and only if it is contained and dense in the valuation 
ring of its quotient field (with respect to the unique extension of v). Condition (i) 
implies that v is non-Archimedean. We also say that v is a Hensel valuation. We 
assume that c as in (ii) can be effectively computed, given a, b and e. (This definition 
is not related to the "Henselian rings" of algebraic number theory.) 

2.2. Example. Z with the p-adic valuation vp (p E N prime) is a Hensel ring. We 
have vp(a) = p-n where n = max{e > 0: pela) (a * 0). (i) is clear, and for (ii) let 
p-n I E. We can assume v(b) = 1, so that b is a unit in Z/pnZ, and any solution 
c E Z of bc a mod pwill do. 

2.3. Example. Similarly, F[y] with the p-adic valuation vp is a Hensel ring for any 
field F and p E F[y] irreducible. We have vp(f) = 2-ndegP where n = max{e > 0: 
pe If). Of special interest are the linear polynomials p = y - a with a E F. 

For any Hensel ring R with valuation v we get a natural valuation on R[x], also 
denoted by v, by setting 

v x') = maxv(f). 
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2.4. Hensel 's Lemma: Hypotheses. As inputs to our algorithmic version of Hensel's 
lemma we havef, fo, f . . , ', so '... m Sm E R[x], z E R and a, 6, - E R, where R is a 
Hensel ring with valuation v. We will assume that the following conditions hold. 

H1: v(f-fo *. fm)C<< 1, 

H2: v( , SI fo .f- If,+ I .. )fm ) < 

H3: fl,*.., fm are monic, 

deg(fo 0 fm) < degf 
degs, < degf, for I < i < m, 

a6 < 1, a 2- < 1 and 1 < av(z). 

Thus, f fo ... fm is an approximate factorization of f, with precision c. z plays a 
role similar to the gcd of fo,. . fm. H2 describes essentially a partial fraction 
expansion 2 s,l/f, of z/fo ... fm, with precision 6. In the usual treatment of Hensel's 
lemma, fo,. .. . fm are assumed to be pairwise relatively prime (more precisely, their 
images in the residue class field of R modulo the maximal ideal (a E R: v(a) < 1) 
satisfy this assumption), and then one can find s,.. ., SM9 8 satisfying H2 with z = 1. 
One can then set a = 1; in general, one will choose a = l/v(z). Thus, H2 states that 
"fO,. . . ' fm are approximately pairwise relatively prime". 

2.5. Hensel's Lemma: Computation. Steps (1) to (3) compute new values f,* for I, 
and steps (4) to (6) new values t, for sl. Steps (1), (4) deal with 1 < i < m, and steps 
(2), (5) with i = 0, which also in H3 plays an asymmetrical role. 

(0) Setf* = f, z* = z, y = max{6, ae), a* = a, e* = ayc and e =1 - 1o ... 
(1) For 1 < i < m compute a,, b,, p, E R[x] such that 

sie = pif, + a, 

v(zbi - aj) < ey, 
deg b, < deg a, < deg fI. 

(2) Compute a , bo E R[x] such that 

ao = soe + fo Y,P 
I s-i<m 

v(zbo - ao) < ey, 

deg bo < deg f - deg f fn. 

(3) For 0 < i < m compute 
f* = f, + bl. 

(4) For 1 < i < m compute c,, dl, g* q, E R[x] such that 

gl * = 0 i.. A I Ai + I 
.. 

m A 

S,(s,g* - z) = qf* + c, 

v(zd, - C,) < y2 

deg di < deg c, < deg f,*. 



640 JOACHIM VON ZUR GATHEN 

(5) Compute g* = fl . f*, and c0, do E R[x] such that 

v(zd0 - c0) 1 

deg do < degft- deg g0 . 

(6) For 
= 

i 
q 

m 
compute+t 

= sl - d1. 
2.6. HenseP?s Lemma: Conclusion. For any s0*,.., s* e R[x] and 3* e R we 

denote by H1*, H2*, H3* the properties H1, H, H3 for the starred elements (*.. r * as 
computed in 2.5), and furthermore 

Vi, 1 < i m, deg Im*= degf , 
degs < degd o degse < degf *. 

(6)or Le Io U m co pute{0, Si . d. }b atto ih0EI n i ,t 

e R[x] monic. Set 

F* 
o b= Hfo t H=HJH , =fot sta *_ ele = SJ* . . 

jeH, vj, J-, fia 

Assume that v(fi - fi) < ae for 1 S i < p, av(s1) < 1 for 0 a i y 
and aI < 1, i 23 < , 2 < 1 &e < 1. Replace in H=d to H the argu- 
ments (in, f1, Sl, fi*, gi) by ( p, 1i, S1*, fi, S-) to get H1 to H4. Then the 
following are equivalent: 

(a) There existf0, h0,. .., sp e R[x] such that H1, H2, H3, H4 hold. 
(b) There existsfO e R[x] such that H1 holds. 
(c)Vdi, 1 < i e sp, v(f<eF1*) f e*. 

This property H5* states that the fi* are essentially unique in the following sense. 
Obviously, one can group some of the fi together to form some Fo,. .., Fp, and also 
change FL to fi within precision e*, and one will still have a factorization of f with 
precision &*. This is the modification allowed in (c), and "(b) =~ (c)" states that it is 
the only way to get a factorization with precision ei*. 

H5* will be crucial for proving correctness of the factorization procedure in Section 
5. A similar property is given by Theorem Q in Musser [1975]. 

We can now collect our claims about the computation 2.5 in the following 
theorem. 

2.7. HENSEL'S LEMMA. Assume that f, 1O0,. , f, Soe* * , Sm, a, 6, e satisfy 
H,, H2, H3. Then 

(i) The computations in (1) to (6) can be performed in R[x]. 
(ii) ( Linear case ). Let (s...F fs, 6*) = ( . m ). Then H,.. .,Hsf hold . 

(iii) (Quadratic case). Assume that deg sv < deg fa for 0 < i < m, and let (st*, ..., 
Smen 8) (t0 ..., tm, y2s). Then Hp, , i.,., HS- hold . 
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For the proof, we first need 

2.8. LEMMA. (i) Let a, f, p, s E R[x], f monic, s = pf + a and deg a < deg f. Then 
v(p) < v(s) and v(a) < v(s). 

(ii) Let h0... hm h* ... h* E R[x] and v(h - h*) < e for O < i < m. Then 

v(h 0 hm-h*o h*) < e. 

Proof. Assume that / = deg s - deg f > 0, and letp = L p1x'. Using induc- 
tion on / - i, one easily sees that v(p,) < v(s) for i = 1,..., 0. Hence v(p) < v(s), 
and also v(a) = v(s - pf ) < v(s). This proves (i), and (ii) is obvious. O 

Proof of Hensel's Lemma. Zassenhaus' [1969] original formulation amounts to 
choosing the new value f1' = fi + esi for fi. It is a straightforward computation to 
check that v(f - fo' * * fm) < e* (assuming z = 1), and similarly for H2*. In the 
above algorithm fi' is replaced by fi* in order to make the degree conditions in H3* 
hold, and the proof involves the appropriate modification of the computation just 
mentioned. 

Lemma 2.8(i) yields the following estimates: 

li, O < i < m, v(e) < e, 

v(a,) < e < a - 2< a-' < V (Z) 

v(fi* - f) = v(b,) < ae. 

Now set g, = fo ... fi-If, 1 *** fm for0 < i < mn. Then 

a0go = sogoe +fogo , pi = s0g0e + E gi(sie - ai) 
I <_i<_m I_ 1K m 

= e slgl -z) + (ze - a,gi) 
0O<- i<im I m 

Here the first summand u1 has v(u,) < e3, and the second summand u2 has 
deg u2 < deg f < k + deg go, where k = deg f - deg go + 1. Writing a0 = u3xk + 
U4 with deg U4 < k, we have 

u, = aogo -U2 = u3(gxg ) + U4g0 - U2, 

and deg(u4g0 - u2) < deg(g0xk). Lemma 2.8(i) implies that V(U3) < V(u1) < 

ey, and thus bo as in (2) can be computed by truncating ao (mod xk) and dividing 
the coefficients by z (with precision ey). 

Since f is monic for 1 < i < m, the division in (1) can be performed in R[x], and 
we have proved (i) for the steps (1), (2), (3). 

f- (fo + aoz-')... (fm + amz-') = f-fo .f . 
fm - azg, - h 

= ez- (z - sigi - h, 

where h is defined by the first equation. In particular, v(h) < (ae)2. Since 

(fi* - (fi + arz-')) = v(z) 'v(zbi - ai) < aye, 
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Lemma 2.8(ii) implies that 

v (f - fo f,) (max{v(ez'(z- si v(h), a-y e a-ye. 

This proves H* to H4 in the linear case (ii). 
Now assume the hypotheses of (iii), and let r = Lo m s, g* - z. We have shown 

that v(r) < y. Writing 

Sir= (q, + Si0 j 
* g*/f.*)fl* + C, 

Ojm 
I*i 

we get from Lemma 2.8(i) 

Vi, O ~< i < m, v (ci) '< -y, 

v(s* - si) = v(di) 

< v(z)>1max{v(zdi - ci), v(c)) < cay. 

Also 

cog* = sog*r + gi(sr - cj) 
1 im 

( , Ii z)(r ig*) 
O0<i?m I<- m 

Here, the first summand w1 has v(w1) < y2 and the second summand w2 has 
deg w2 < deg f. As above for bo, it follows now that do in (5) can be computed by 
truncating co (mod xk-l) and dividing the coefficients by z (with precision y2). 

(S1 c-I - z i ( i-i l)gi - 

= Sgo - I 
(sOg*r + fog* (sir - c + (S -C'Z )gj - z 

1 i<s m 1,i s m 

=rrz-l s sl -r z-. 
Os<i6m 

It follows that 

v( g* - z) 
O S i < m 

= vt E (Si ' ciz-~lg* - z - z (zd,-c1)g*) 
0 im OSi m 

< ay2. 

This shows that H* to H4* hold in the quadratic case (iii), and the only work left to 
do is to prove the uniqueness statement H5* in both the linear and quadratic case. 

"(a) * (b)" is trivial. For "(b) =s (c)", choose some fo as in (b) and let e = f - 
fo .fp, g1 =f. fi-f .. fp, G* F= Fo* Fl* Ft*+I Fp*. It follows that 
v( - F1*) < ae for 1 < i < p, and also 

v ( fo-Fo*J) = v (( fo-Fo ) go ) 

= v((fogo -f) + FJ*(G* - go) + (f- FO*G*)) < aE. 
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Now choose u E R such that 

v(u) = max - v 

and set 

hi = u(fi-F,*) E= K[x], 

where K is the quotient field of R. Then v(u) < ae, and v(h,) < 1 for 0 < i < p. 
Also 

*> v(f ...fp) = v(f-(Fo* + uho) ... (F* + uhp)) 

v vf -F* ... F* F -u L G*hl + u2w) 
o0sip 

for some w E K[x] with v(w) < 1. Since v(F*), v(h ) < 1 for all i and (a,_)2 < 
this implies that 

V(u)v( Gih < 
O i p 

It is sufficient to show v(u) < e*. D = {d e K: v(d) < 1) is a valuation ring with 
maximal ideal m = {d E D: v(d) < 1), and residue class homomorphism p: D -+ 

D/m. We also denote the homomorphism D[x] -+ (D/m)[x] by p. We have Si/z, 
hi E D[x] for all i. 

v( S,*G*/z - I) = V(I Sigi 
- 

) 
0 '<i 'P O<im 

It follows that 

p p(Si*/z)p(Gi) - = O, 

gcd(p(Go*),., p(Gp*)) = 1, 

Vi, 0 < i < p, gcd(p(F*),p(G*)) = 1. 

Now if v(E0<1<p G*h1)> 1, then v(u) < * and we are done. On the other hand, if 
v(Eo G*h )< 1, then 

L p(G*)p(h ) = 0, 
O < i <p 

Vi, 0 s i < p, p(F*) divides p(G*)p(hj), 
Vi, 0s< i<p, p(Fj*)dividesp(hj). 

For 1 < i < p, Fi* is monic and deg hi < deg F,*, hence p(hi) = 0 and v(hj) < 1. It 
follows that 

S = max v Fi*) < v (u) = v (fo - Fo*), I<I <P 

v(u) = v((fo-Fo*)go) 

= V ( f- + Fo*(G* - go)-f + e*) < max(-*, jB, e*}, 
and hence v(u) < e*. 
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For "(c) (a)", write f = fo(fi ... fp) + e with fo, e R[x] and deg e < 
deg(f ... fp), let g1, G* be as above, and e* = f - FO*G*. The equation 

Fo* (Go- go) + e* = (fo - Fo*)go + e and Lemma 2.8 yield the following estimates: 

-(go- ) G* 

v(e* + fo* (go - Go*)) 

v( fo -Fo ) < e*' 

Vi, O < i p, v(g,-G*) <e*. 

Now it is easy to check that with S- = Si* for O < i < p properties H1,..., H4 
hold. a 

Of course we want to iterate the computation in 2.5. We shall write 

( fo 9 ...m9 So0... Sm9 e) (fo . t.f, f ) 
for the linear case, and 

(fo* * . 9 tM SO *.. SM9 89 0) ( ... 9 , 9m So, .., S* 9 ) 

for the quadratic case (omitting the other input-output-data). Assume f, fo,..., 
fmi, So. 9 Sm9 z, a, 8, e given such that H1, H2, H3 hold. Let y = max(8, a-e}, and 
assume a-y < 1. For the linear iteration, we define (Jok I ... I fmk -k) for k > 0 by 

( foo * 9 fmo eo) (fo 9 . m e) 

(fok fmk. 'f ek) = (fo,k-1'9 . fm,k-I9 S09... 9 Sm, ek-1). 

By induction on k one sees that this is well-defined, and ek = e(ay )k. Thus we 
obtain a Cauchy sequence of polynomials of bounded degree. In the completion of R 
this sequence converges coefficientwise with a linear rate of convergence, and the 
limit polynomials form a factorization of f. Note that we never have to perform 
steps (4), (5), (6), and we can also skip step (2), since by Hs we can recover fo to the 
required precision at any stage of the iteration. 

For the quadratic iteration, we define (Jok ... 9 fmk SOk ...* 9 Smk, 80k ek) for k > O 
by 

(foo 9. 9 o) = (fo ...., Y 

(fOk 9*.. 9 = 
= 

(fO,k-11 .f I *m,k-I 9 SO,k-I 9,* Sm,k-I1, 8k-1I 9 ek-1)q. 

Again this is well-defined, and 

ek =e(a?y )2' k e Ek 

If R is complete, this sequence converges quadratically to -a factorization of f. 
We can rephrase the uniqueness property as follows: If we start with an ap- 

proximate factorization close to a true factorization of f, then the results of the 
iteration will get closer and closer to that true factorization: 

2.9. COROLLARY. Assume that f, .o . ., fm, so ... 9 Sma , 8, E satisfy H1, H2, H3, 
that a, 8, e satisfy the numerical conditions in Hs, and that fo.,... , fm4,, e have been 
computed by a Hensel iteration (linear or quadratic). Furthermore, assume that a e R 
with v(a) = 1, go E R[x] and gl,..., gp E K[x] are monic with ag, E R[x] and 

f = go...gp (inK[x]), 
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that Io. .., Ip, Fo, ..., F are as in Hs, and 

v(aF, - ag) ae 

for 1 < i < p. Then, writing f# = 11I 1f#, we have for 1 < i < p 

v(aF7# - ag) <e# 

Proof. It is sufficient to prove the claim for one step of the Hensel iteration, since 
the conditions H1, H2, H3 are inherited from step to step. But then the claim is a 
direct consequence of Hs (using g, for f1). [1 

We want to discuss an estimate of the number of "basic operations" that a Hensel 
iteration uses. We make the following (reasonable) assumptions. 

For any a, b E R, addition and multiplication with precison E (i.e., the computa- 
tion of some c E R such that v(a + b - c) < E, resp. v(ab - c) < e) and division 
with precision E (as in Definition 2. 1(ii)) can be performed in T(E) basic operations. 
T is nonincreasing (i.e., e < 8 = T(8) < T(e)), and then for /3 < 1 

E T(e,-') <, NT( E#Nf). 
1 <-i<N 

If we use straightforward polynomial arithmetic, then addition, multiplication and 
division with remainder of polynomials in R[x] of degrees at most n with precision E 
can be performed in O(n2T(e)) operations. In our two prominent examples-R = Z 
with a p-adic valuation, and R = F[y] with the y-adic valuation- these assumptions 
are satisfied using straightforward arithmetic, with T(E) = O(log2 e). A basic opera- 
tion is a bit operation for R = Z, and an arithmetic operation in F for R = F[y]. 

For simplicity, we give the following estimate only for the linear iteration. 

2.10. PROPOSITION. Suppose an input is given as for a linear Hensel iteration. Then 
the Nth result (foN' ... , fmnN EN) can be computed in O(n3NT(eN)) basic operations, 
where n = deg f. 

Proof. Note that it is sufficient to perform all computations for the k th result with 
precision Ek. The total number of basic operations in steps (0), (1), (2), (3) then is, up 
to a constant, 

L n 3T(e) k n3 T(e(ay)k) < n3NT(EN) 
1I< k,<-N I <-k,<-N 

3. Newton's Method. 

3.1. THEOREM. Let R be a Hensel ring, f E R[x], a, b E R and a, 8, E E R such that 

Ni: v (f (a)) E , 
N2: v(a-b) 8, 

N3: a8 < 1 < av(f'(b)) and a2E < 1. 

Let a* = a -f (a)/f '(b), y = max(8, ae), 8* = y, and e* = aye. Let Nj* denote 
condition NA with (a, 8, e) replaced by (a*, 8*, e*), for i = 1, 2, 3. Then N*, N2*, N3* 
hold, andfurthermore 

N4*: v(a* - a) <E. 
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N5*: Let d E R such that v(a- -a) < e < 1, and assume a = 1, 8 < 1. Replace 
a* by d in N* to get Nl, for i = 1, 2, 3, 4. Then the following are equivalent: 

(a) N1, N2, N3, N4 hold. 

(b) N1 holds. 

(c) v(d - a*) < *. 

Proof. We first observe that for h E R[x], c E R, e E R we have 

v(h(c)) < E 4* 3r E R[x] 

v(h - (x - c)h'(c) - (x - c)2r) < e. 

A first-degree Taylor expansion of h around c proves " ",and " " follows by 
dividing h by x - c with remainder and using Lemma 1.8(i). 

Now use " = " with h = f, c = a to get r E R[x], and set m = 1, fo = f'(a) + 
(x-a)r, f, = x-a, so= -r, s, = 1, z = f'(b). Then H1, H2, H3 hold, and 
we can apply Hensel's lemma. We find al = f(a), v(f'(b)bI - f(a)) < ye, 
v(f* - (x - a*)) < e*, and v(f - fo*(x - a*)) < e*. All the claims now follow 
from H1*, ... ., H* [ 

Note that while Yun [1976] motivates the Hensel method as a special form of the 
Newton method ("Hensel meets Newton"), here the Newton method is a corollary 
of the Hensel method ("Hensel beats Newton"). 

If a-y < 1, then again we get iterations which converge linearly (using a fixed b) 
resp. quadratically (adapting b at each step) if R is complete. (Fellmann [1977] 
contains a Newton iteration akin to the one presented here.) 

Thus for the linear iteration, we are given f E R[x], al E R and e < 1 such that 
N1, N2, N3 are satisfied with b = a = a,, 8 = e and a = 1. If we then assume that 

v(ak+l - (ak -f(ak)/f'(b))) 
k + 

Theorem 3.1 implies that 

v(f(ak)) < ek 

for k > 1, and that ak is uniquely determined with precision ek by 

v(f(ak)) < ek and v(a, - ak) < e. 

An important application in algebraic computing of Newton iteration is the 
inversion of power series (Sieveking [1972], Kung [1974]), using the y-adic valuation 
v on R = F[[y]]. Unfortunately, applying Newton's method to the natural candidate 
f = bx - 1 (b E R a unit) fails to yield a fast computation, and one has to use the 
rational function x- - b. However, the above Hensel lemma withfo = b, f, = x - a, 
s= -b, s, = x, z = 1 proves that if v(ba - 1) < e, then v(ba* - 1) < e2 where 
a* = a + a(l - ab), and thus yields the desired fast computation. 

For a valuation satisfying 2.1(i), but not necessarily 2. 1(ii), this argument will also 
show that b ' can be approximated with arbitrary precision for b e R with v (b) = 1. 
However, this does not mean that 2. 1(ii) follows from 2.1(i). An example (besides 
trivial valuations) is R = F[y2, y3] C F[y], where F is a field and v induced by the 
y-adic valuation on F[y]. Herey3/y2 cannot be approximated with precision e =4 

We now want to apply Newton's method to differential equations, taking the 
general case of systems of nonlinear partial differential equations. This includes the 
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case of systems of algebraic equations. The solutions that we consider are formal 
power series in several variables and can be approximated to arbitrary precision by 
polynomials. Thus we only work with the latter. We first present a framework for 
describing these equations, then a Newton lemma, and finally a simple condition on 
the equation which ensures that the Newton lemma can be applied iteratively to 
improve approximate solutions. This iteration also requires an initial approximation; 
the lack of further boundary conditions makes the solution nonunique, and we 
compute a particular solution. But on the one hand, the algorithm (Theorem 3.4) can 
be modified to accommodate such boundary conditions, and on the other hand, the 
construction indicates what kind of boundary conditions might guarantee existence 
and uniqueness of solutions. We will not deal with this question in the sequel. 
(Precious little is known about this problem relative to solutions that are real 
functions, say; one general result is in Friedrichs [1958].) The intention of the 
development presented below is not to provide practical algorithms, but to show 
how these rather general equations fit into the setting of this paper. 

Now let F be a field, R = F[yl,..., y,] with the (Yi,, .., yP)-adic valuation v, so 
that v(a) = 2-J if the lowest nonzero terms of a E R \ (0) have total degree j. We 
write D, for a/ay, so that D1: R -* R is an additive mapping and v(Dj(a)) l ,v(a) 
for all a E R with y = 2. 

3.2. Definition. For any m > l and q, 1 < q < cc, v induces the Lq-norm 

vq: Rrn> R 

a v E (a, 
)q 

I < <m 

and also the L. -norm 

vo:c Rm R 

a max v(a1). 

Note that for any q < oo and a E R we have vOO(a) < vq(a). 
In order to encode differential equations, let W = (1,.. m) x NP and S = 

R[(x,: w E W)]. For a e Rm we have the evaluation homomorphism S -> R 
sending x, to xw(a) = D"' ... Dp'p(awo). This is a ring homomorphism, and fixing 
w, we get an additive mapping Rm -> R with a -- xw(a). Thus xw stands for the 
differential operator that takes the woth component of a E Rm and applies Diwl to it, 
1 < i < p. S consists of all polynomial expressions in such operators. 

Now letn > 1 andf = (fl,. . . , f,) E S n, where 

fif= E I.WIZWI . 
I 0 

wI,. W1E W 

Then f = 0 represents the system of nonlinear partial differential equations 

n= Efj 
awl I+-'+W?P.?w 
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where a E Rm. Note that this includes the case of algebraic equations (when 
w = (wo, O,..., 0)) and also differential equations on affine algebraic varieties. 

We say that u E NP occurs in f if there exist 1 > 0, j < n, 1 < i </ and 
w1,..., wI E Wsuch thatfjw,...w, W 0 andw, = (wo, ul,..., up). The orderoffis 

k = max{u, + * - + up: u E NPoccursinf), 

and the highest-order operators of f form 

K= (u E NP: uoccursinfandU1 + + up = k). 

Thus, f is an algebraic equation if and only if k = 0. We have the following 
Newton lemma for differential equations. 

3.3. LEMMA. Letf e Sn have order k, 1 < q < oo, a, b, c E Rm, y, 8, e E R satisfy 

DI: v,(f (a)) <8 

D2: vq(b-a) <8 

set y = max('k8, e}, and assume that vq(c) < ,u- ke and 

v(f(a) + af (b). xw(c) < 
WE WJ -y 

Furthermore, let a* = a + c, e = nl/qye and replace (a, e) by (a*, e*) in D1, D2 to 
get D*, D2*. Then D*, D2* hold. 

Proof. Denote by ma the maximal ideal in S generated by (xw - xw(a): w e W}. 
Using the Taylor expansion 

f1= f(a) + W>9W (a)(xw-xW (a)) + r, 
w E W 

w 

for I < j < n and some rj E ma, the proof is straightforward. rO 
Note that the arguments of vq in DI, D2 might have different lengths, and that we 

only need the hypotheses for q = ox in order to prove the conclusions for general q. 
From the above lemma we want to get an iterative procedure again for the 

computation of approximate solutions of f = 0. This is achieved by the following 
sufficient criterion on f, which insures that a c as in Lemma 3.3 can be efficiently 
computed at all stages of an iteration. Then we can approximate a solution to 
arbitrary precision, provided the convergence factor nl/qy is less than 1 and an 
initial solution a E Rm is known with vq( f (a)) < 1. 

Defie r by -r < 2-r+ 1, 2-s- I t < 2-s5 and let Define r, sby 2r ~ 2~2 ~~ sadet 

( +P +) (s + k; r -) 

Then 1 is the dimension of the vector space over F 

(d E R: v(d) < 2-(k+r) and deg d < k + s), 

and thus the number of coefficients of c that are relevant for the hypothesis of 
Lemma 3.3. 
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3.4. THEOREM. (i) Assume k >? 1, char F = 0 and that there exists an injection 
4: 1..., n} {-- 1,. ., m} such that 

Vi < n 3u E K v (b) 

Then some c as in Lemma 3.3 can be computed by solving a nonsingular triangular 
system of size 1 of linear equations over F. 

(ii) Assume k = 0, and that the m X n-matrix M over F with 

MIJ-= a 
f 

(b) 
(J,O... .11Y = 

..=yp 
= 0 

has rank n. Let M' be any nonsingular n X n-submatrix of M. Then c as in Lemma 3.3 
can be computed by solving for each d, r < d < s, (p1d) systems of linear equations 
with coefficient matrix M'. 

Proof. (i) We can assume that 4(i) = i for 1 < i < n. For 1 s i < m and u E K 
we set 

el=af (b) o 

and for any u E ZP we define 

yU = SYi** *~ yp if u E- NP9 

0 O otherwise. 
For d >O, let Ud = {u ( NP: ul + --.+up = d), so that 

Hd= e yuFc R 
UE Ud 

is the (P?d )-dimensional F-vector space of homogeneous polynomials of degree d. 
We want to compute some c = (c ,.. ., cm) E Rm satisfying the condition of Lemma 
3.3. Write c =4sirs Cl, k+l with cIJ E Hj, and set cl = O for n < i m. We can 
compute (ci1 )I < i<n consecutively forj = k + r, ..., k + s by requiring that 

Vi < n fi(a) + , afi (b)xw (Ck,l,..., cCn,k+l)) 
we= Wax r rA<j 

E (mjk)m c R M 

where m6-k = {a E R: v(a) < 2-(i-k)}. In order to perform this computation it 
suffices that the linear mapping 

d: Hk+d> Hdn 

z } > E e,ux(lu) ( Z)) 
u E- K I <i n 

be surjective for d > 0, and for this in turn it is sufficient that the linear mapping 
4'd: Hk+d -> Hd 

z e "Du' ... Dpup(z) 
uiuK 
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be surjective for all i < n. Fix some i, 1 < i < n, and let t E NP be minimal with 
respect to the lexicographical order -< on NP such that t E K and e1t ? 0. For 
v E Ud, u e Uk the trivial fact (u -< t or u = t or t -< u) implies that e,u = 0 or u = t 
or Dl ... Dpp(yv?I) is a multiple of yv+(u. Thus 

CdWyV+t) = e,,(v, + t1)* (vp + tp) yv 

+ E e,u(vl + tl),. (vP + t )y YV+t-u. 
ueK 

v+ t- u-<v 

Using v = (O,..., 0, d), this shows that dE Im(4'd), and by induction on the 
lexicographical order that 

VV E Ud yv E WCd), 

hence Hd = Im('d). 

Thus the computation of the coefficients of c,J E HJ proceeds according to the 
lexicographical order on Uj{d, solving a triangular system of linear equations whose 
diagonal entries are all nonzero integer multiples of e,t. 

(ii) We can assume n = m and write 

c = (c1,.Cl), ci = CuY 
r<i ds< s 
Ue Ud 

Computing for consecutive d = r, r + 1,... the c,u (for all u E Ud), we find the 
system of equations 

V n 0= E Mijcu + coefficient atyu of 
I Sj,< n 

1ji\h~d (J,?0,) lI< d 
veU1 

4. Short Vectors in Modules. In Section 5, we will consider the problem of 
factoring polynomials over a valuation ring. Lenstra-Lenstra-Lov'asz [1982] intro- 
duced the technique of computing short vectors in Z-modules (" lattices") to obtain a 
polynomial-time factorization algorithm for univariate integer polynomials. In this 
section, we consider this technique in the context of valuation rings. We present an 
algorithm that computes a shortest vector in a non-Archimedean valuation module. 

4.1. Definition. A nontrivial valuation w: R -* R is called a Euclidean valuation if 
there exists /B, 0 < / < 1, such that 

El: Va E R (a O =w(a) > 1), 

E2: Va, b E R 3q E R (b =* w(aC-qb) < fw(b)). 

R is then called a Euclidean valuation ring. (The reason for calling the valuation w 
rather than v will become clear in the next section.) 

Condition E2 says that division with remainder is possible, with the remainder 
having value at most /3 times the value of the divisor. Such a ring is then Euclidean 
(in the usual sense), and the Euclidean algorithm to compute a greatest common 
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divisor of a, b C R takes at most 

1 + log((b)) = O(log w(b)) 
log(1/13) 

division steps. We have two standard examples of Euclidean valuation rings: Z with 
the absolute value, and F[y] with w(f) - 2degf, where F is a field. In both cases we 
can choose /1 = 1/2. 

4.2. Remark. We could also define a "pseudo-Euclidean valuation ring" in which 
only pseudo-division is required. That is, E2 is replaced by 

Va, b e R 3c, q E R b#O ==w(c) = 1 and w(ca - qb) < , w(b). 

If F is an integral domain, then F[y] with w(f) - 2degf would satisfy this require- 
ment. 

4.3. Definition. Let fl, . . , fn E Rn, M = i< Sn fiR C Rn the R-module generated 
by f1, . ., fn and writef ti= (f,.. ., fin) with ftj C R. We call 

w(M) = w(det((Ufi)lJ)) E R 

the value of M. 
One easily verifies that w(M) is well-defined: fl,.. ., fn are linearly independent 

over the quotient field of R iff w(M) * 0. If w(M) * 0, then any other sequence of 
n vectors generating M differs from (11,... , fn) by a linear transformation which is 
invertible over R. The determinant d of this transformation has w(d) = 1, using E. 

Definition 4.3 is really a special case of a more general notion. For any R-module 
M and n > 0 one can consider the exterior power AnM. This is again an R-module 
(see,e.g.,Bourbaki [1958, Chapter 3, 5.5]). If M C Rn, then AnM c AnRn A R is an 
ideal, and in the case of Definition 4.3 we have 

w(M) = min{w(a): a E AnM\{0}}, 

if AnM * 0. We note the following 

4.4. LEMMA. Let N c M c Rn be R-modules. Then either w(N) = 0 or w(M) s 
w(N). 

1. Proof. Let fl,.. ., fn and gl,..., gn generate M and N, respectively. Then there 
exist a1j E R (1 < i, j < n) such that g, = ElZ<1j< n aljf. Thus 

w(N) = w(det(g,k)) = w(det(a,j)det(fjk)) = w(det(a,j))w(M). 

By condition E1, either w(det(a,j)) = 0 or w(det(aij)) > 1. 
2. Proof. The functoriality of An implies AnN c AnM. Thus either AnN = 0 or 

w(M) < w(N). C]1 
Recall the norms wq on Rn for 1 < q < x from Definition 3.2. 

4.5. LEMMA (HADAMARD'S INEQUALITY). Let M be the module generated by 

f ,...,fnERn.Then 
(i) w(M) <i -i < t w n W2(1i) 

(ii) If w is non-Archimedean, then w(M) <, H <_,<;n W,,,(fi)- 
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Proof. If w is Archimedean, then R c C and w is the absolute value (Ostrowski 
[1918]). (i) is the usual Hadamard inequality (see, e.g., Knuth [1981, 4.6.1]). If w is 
non-Archimedean, then 

w(M) =Wt fl,7T I.. k7m 
ST E- SI' 

4 maxw(fl,1) ... w(fn,7Tn) < W.(fl) 
... woo(fn) O 

7TE S, 

We now consider the computational problem of finding a short vector in an 
R-module. Lenstra-Lenstra-Lov'asz [1982] presented an algorithm for R = Z with the 
absolute value. In the remainder of this section, we restrict attention to non-Archi- 
medean valuations. In this setting, a more powerful result is possible than in the 
Archimedean case: one can efficiently compute a shortest vector. This has been used 
in Chistov-Grigoryev [1982] and Lenstra [1983] for factoring multivariate polynomi- 
als over finite fields. The method presented here generalizes Lenstra's approach. 

For the rest of this section, let R be a ring with a non-Archimedean Euclidean 
valuation w. For n > 1, we write w = wO: Rn -* R. 

4.6. Definition. We call a sequence (fl,.. . fnJ) with fi = (fl,. . . , fn) E Rn reduced 
if fl,.. ., fn are linearly independent over the quotient field of R, and the following 
hold for all i,j, 1 < i < j < n: 

R,: w(fi) = W(Ai), 

R2: W(fi) <1 w(ky), 

R3: W(fjj) < W(fyj) ifi j 

The assumption of linear independence is not essential; the development of this 
section goes through with minor modifications in the general case. 

4.7. THEOREM. Let ..f... ., Jn) be reduced, and M C Rn the module generated. Then 

w(f,) = min{w(m): m E M\(O)). 

Proof. Let 

X = (X1,.. Xn) = E rfti C M\{O} 
I -i<n 

with r1,..., rn c R. Let u = max{w(rifi): 1 4 i < n} and k = min{i: w(rJf) = u). 
We consider 

Xk = rkfkk + E rjfJk + E rjfJk 
I1<j < k k <js<n 

Ifj < k, then 

w(rjf,k) < w((r)w(f,) < u = W(rkfkk), 

using condition (R1). If k < j, then 

w(r,fjk) < w(rj)w(fjj) = w(rJfJ) < u. 

Thus in both cases, w(rjfjk) 
< u = w(rkfkk), and hence 

W(fl) < W(fk) = W(fkk) < W(rkfkk) = W(Xk) < WWI 

where the last equality uses the fact that w is non-Archimedean. C] 
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We now present an algorithm that transforms fl,... , fn Ee Rn into a reduced 
sequence generating the same module. 

Algorithm REDUCED BASIS. 
Input: fl,... ., Ca R' linearly independent, where R is a Euclidean valuation 

ring. 
Output: A reduced sequence (gl,..., g ) and an n x n-permutation matrix A 

such that Ag1, . . ., Agn generate the R-module M = E fiR. 
1. Set k = 1, A = Id, and gi = f, for 1 i sn. 
2. Dosteps 3 to7 whilek < n. 
3. Choose m, k < m < n, with 

w(gm) = min{w(gj): k < i < n) = u, 

and interchange gk and g, 
4.Dostep5fori=k-1,..., 1. 
5. Find q E R such that 

W(gk1 - qgJ1) < PW(gii), 

and replace gk by gk - qg,. (We will see that gii * 0.) 
6. If W(gk) = u, then interchange two columns from k,..., n such that w(gk)= 

W(gkk) after the interchange. (We will see that W(gk,) < U for 1 < i < k, so 
that the interchange is possible.) If B is the matrix of this column permutation, 
replace A by AB. Replace k by k + 1. 

7. If W(gk) < u, then replace k by 

max{i: i = I or (I < i < k and w(gi) <1 W(gk))). 
8. Return (gl,..., gn) and A. 

4.8. THEOREM. Let fl,. .. , fn E Rn be linearly independent over the quotient field of 
the Euclidean valuation ring R. With this input, REDUCED BASIS has the following 
properties: 

(i) It correctly computes a reduced sequence (g1,..., gn) with gi E Rn, and an 
n X n-permutation matrix A such that 

E (Agl) R fE iR. 
1 in Iin 

(ii) If w(fi) < W for all i, 1 < i < n, then it uses O(n4 log W) operations in R. 

Proof. Throughout the algorithm, the R-module generated by gI,..., gn remains 
unchanged except in step 6. But if EzS<j,<AgiR = YL1,j, fJR and B(gl,..., gn) = 

( g, gn ), then 

E (ABgl)R= E fR. 
_ i-n I i<n 

(Read the transpose of a vector whenever necessary.) In particular, the last claim in 
(i) follows, and each gi computed in the algorithm is nonzero. 

For 1 < k < n + 1, call a sequence (g1,. . ., gn) k-reduced if conditions R,, R2, 
R3 hold for all i, j with 1 < i < j < k, and w(g1) < w(gj) for 1 < i < k < j < n. 
Thus "(n + 1)-reduced" is the same as "reduced". We now show the following 
claim: Each time the algorithm passes through step 2, (gl,..., gn) is k-reduced (with 
the current value of k). 
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Correctness then follows (using (ii)), since the algorithm terminates in step 2 with 
k = n + 1. 

At the first pass through step 2, k = 1 and the claim is trivial. 
After passing through step 2, steps 3, 4, 5 do not affect the first k - 1 rows or 

columns. The claim and g, * 0 imply g,, * 0 for i < k, so that step 5 can be 
executed. Either the condition in step 6 or the condition in step 7 is satisfied, but not 
both. If step 7 is applicable, then clearly the claim is satisfied at the next pass 
through step 2. It is now sufficient to show that W(g1k) < u for 1 < i < k in step 6, 
since then the claim is true in the next pass through step 2. 

So fix some i, 1 < i < k, and consider q E R as computed in step 5. It is sufficient 
to show that 

w((gk - qg,)1) < w(gk) for 1 <j < k, 

W((gk - qg,),) < W(gk)- 

The choice of q implies that 

W(gk,) = w(qg,,) = w(q)w(gi), 

W(gk, - qgli) f /W(g11) < W(g11) = W(g1) < W(90) 

W(9k, 
- qglj) < max{w(gkj), w(q)w(gij)} 

< max{w(gk), w(q)w(g,)) = w(gk) 

for 1 < j < n. 
For (ii), consider the function s = H1 ,<n w(g1). Initially, s < Wn . By what we 

just proved, s does not increase in step 5. But then s does not ever increase in the 
algorithm. It strictly decreases by a factor < /3 if the condition in step 7 is satisfied. 
Otherwise step 6 is applicable, where k increases by 1. Since k < n + 1, the total 
number of passes through steps 6 and 7 is 0(n log 17,(Wn)) or 0(n2 log W). 

The only computations in R of the algorithm are in step 5, which has one division 
with remainder and n multiplications and subtractions. Thus each pass through step 
6 or 7 requires 0(n2) operations, taking the loop of step 4 into account. C 

5. Factorization of Polynomials. In this section we describe an algorithm for 
factoring polynomials over a ring with valuations. We view as the goal of a 
factorization procedure for polynomials from R[x] (where R is an integral domain 
with quotient field K) to find, given f E R[x], polynomials fl, . ., Jr E R[x] which 
are irreducible in K [x] and such that f = af, ... Jr for some a E K. For a somewhat 
"axiomatic" description of the factoring algorithm we shall want to use the following 
ingredients. 

Suppose we have a ring R with a set V of valuations, and a further valuation w, 
and also BU E R for u E V and B E R. Then ((Bu), B) is called an inverse bound (for 
V and w) if 

Va E R (w(a) < B and Vu E V u(a) < Bu) = a = 0. 

5.1. Definition. A ring R with a set V of nontrivial Hensel valuations and a 
Eucidean valuation w is called a ring with sufficient valuations if the following 
conditions are satisfied. 
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SI (Modular factorization): For v E V, consider the maximal ideal mv = {a E R: 
v(a) < 1) in R. We assume an effective factorization procedure in (R/mv )[x], and 
PV E R such that mv = pvR. (Note that R/mv is a field.) 

S2 (Inverse bounds): For any b E R one can effectively find v E V such that 
v (b) = 1. Set v = V(pV). For any B E R one can effectively compute an N E N such 
that with 

B |JEC if u =v, 
Ba 1 if ueV\(v), 

((Bu), B) is an inverse bound for V and w. 
S3 (Gauss lemma): Let K be the quotient field of R. For any f E K[x] one can 

effectively compute a E R \ {0) such that for any monic g E K [x] dividing f (in 
K[x]) we have ag E R[x]. 

We shall show that for a ring R with sufficient valuations one can efficiently 
compute the factorization of any polynomial from R[x]. 

We did not want to assume that R is a unique factorization domain, so that our 
methods also apply, e.g., to rings of integers in number fields. However, for a ring R 
with sufficient valuations, R[x] has a property almost as strong as unique factoriza- 
tion (and which might be called unique "pseudo-factorization"). For everyf E R[x], 
there exist fl,. . ., Jr E K[x] irreducible monic and a E R such that afi E R[x] and 
arf = lc(f )(af1) ... (afr) in R[x]. Here a comes from the Gauss lemma S3, lc(f) is 
the leading coefficient of f, K is the quotient field of R, and fl, .. J, r are unique (up 
to permutations). 

5.2. Example. Let us first examine what the above ingredients are in the paradigm 
R = Z. We take the absolute value for w and the set of p-adic valuations vp for V 
(p E N prime). Then the product formula holds 

Va E Z \ (0) w(a) H1 v(a)=1, 
Ve V 

and for any prime number p and k E N the following is an inverse bound for V and 
w 

Ru =/( P uvp, B=pk 
U 1 otherwise, 

The term "inverse bound" is motivated by this situation where either Hv E =vv(a) = 

w(a)`l or a = 0. The relevance of the product formula for factorization is pointed 
out in Trotter [1980]. Modular factorization is given by Berlekamp's algorithm, and 

v= pZ. In S2, with v = vp, any N such that B < pN is sufficient. If f E Q[x], 
b E Z and bf E Z[x], then a = b lc(f ) satisfies the Gauss lemma S3. 

5.3. Example. The polynomial ring R = F[y] over a field F fits into the picture as 
follows: We take the set 

V = (vp: p E F [ y ] monic irreducible) 

of p-adic valuations on R as in Example 2.3, and for w the degree valuation with 
w(f) = 2degf (and w(0) = 0). Then again a product formula holds: 

Va E R\(0) w(a) HI v(a)=1. 
vE V 
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Thus for any vp E V and k E N the following is an inverse bound: 

{2-kdegp ifu=v B 2kdegp 

1 otherwise, 

If F is infinite, then it is sufficient to take the subset 

V' = {vp: 3a e Fsuchthatp =y - a) 

of V. If F is finite, then with this V' the halting condition will not be satisfied; this 
fact manifests itself in the necessity for field extensions-given by R/mv with 
v E V\ V'-when factoring bivariate polynomials over finite fields (Chistov- 
Grigoryev [1982], Lenstra [1983], von zur Gathen-Kaltofen [1983]). 

We first remark that one of the assumptions follows from the others. 

5.4. LEMMA. Condition El for w is a consequence of the other assumptions. 

Proof. We have to show that w(a) > 1 for all a E R \ (0). So assume that 
w(a) < 1 for some a E R \ (0). Set B = 1, and use the halting condition to find 
v E V, e > 0, N E N and the corresponding Bu E R (for u c V) such that ((Bu), B) 
is an inverse bound. Since v is nontrivial and v(b) < 1 for all b E R, we can choose 
a b e R such that 0 < v(b) < 1. Also choose k > 1 such that w(a)kw(b) < 1, and 
set c = akb. Then 

v(cN) = v(akN)v(bN) < v(b)N E = 

w(cN) = (w(a)kw(b))N < 1 = B. 

It follows that akNbN = CN = 0, contradicting the fact that a, b * 0 and R is an 
integral domain. O 

The following lemma will provide the connection between short vectors in 
modules and polynomial factorization. For f, h E R[x], v E V and E > 0, we say 
that h divides f with precision e (with respect to v) if v (f - sh) < E for some 
s E R[x] with deg s < deg f - deg h. Throughout this section we consider the norm 
wq: Rn -- R with q = 2 if w is Archimedean, and q = oo otherwise. For any n, we 
identify a polynomial in R[x] of degree less than n with its coefficient vector in Rn. 

5.5. LEMMA. Let f, g, h E R[x] have positive degrees n, m, k, respectively, v E V, 
and suppose that h is monic and divides both f and g with precision e (with respect to v). 
Let ((Bu), B) be an inverse bound, and assume that Bu = 1 for u * v, e < Bv < 1 and 
wq(f )mwq(g)n < B. Then f and g have a nontrivial common factor in K[x], where K is 
the quotient field of R. 

Proof. The lemma is trivial if e = 0. We also have e < 1. So assume ? > 0, and let 
p E R,lE Nwithmv = pRand 

v(p') < - < v(p`-c 

Consider the R-module M c RJ??n generated by 

{p'x': 0 < i < k) U {hx': 0 < i < m + n - k). 
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For any r E R[x] of degree < m + n we have 

h divides r with precision E 

3s E R[x] suchthatdegs < m + n - k and v(hs - r) E 
r E M. 

The generators for M form an upper triangular matrix, with pi and 1 on the 
diagonal. Let d be the determinant of that matrix. Then d = plk, w(M) = w(d), and 

v(d) vv(p) < E s Bv. 

Now consider the module N c Rm+n generated by 

{fxl: 0 < i < m) U {gx': 0 < i < n). 

By assumption, each fx1 and gx1 is in M, hence N c M. If w(N) * 0, then 

w(d) = w(M) < w(N) < wq(f)mwq(g)n < B 

(using Lemmas 4.4 and 4.5), and hence d = 0 by S2, contradicting the linear 
independence of the generators of M. Thus w(N) = 0 and hence N has rank 
< n + m. There exist s0, ..., Sm 1, to ..., tn- I E R, not all zero, such that 

E Slfx, + E tlgx1 = O. 
Os4z<m 4< 

Then for s = >,O<i<m si x t = EOAi<n tix' c R[x] we have sf + tg = 0. This implies 
that gcd(f, g) is nontrivial in K[x]. El 

We now present an algorithm for factoring polynomials in R[x]. We assume 
a nondecreasing function T: N -- R and a short vector algorithm which, given 
fl .f.,n c R n linearly independent, computes x E Efi?R = M such that 

VY E M\ (O) Wq(X) < T(n)wq(y). 

If w is non-Archimedean, then we can take our algorithm REDUCED BASIS and 
(n)= 1. If w is the absolute value on R = Z, then we can take the short vector 

algorithm from Lenstra-Lenstra-Lov'asz [1982] and T(n) = 2(n- 1)/2 

Algorithm FACTOR. 
Input: A polynomial f E R[x], where R is a ring with sufficient valuations 

(V, w). 
Output: If f is reducible, then (e, a), where a E R, and e E R[x] is a proper 

factor of a2f. 
1. Compute a E R as in S3, set n = deg f, 

c _|w(2 n)W( f) if w is Archimedean, 

= w. (f) otherwise, 

and B = (C2w(a)T(2n))n + 1. 

2. Take b = a * discr(f), find v, E, N, and Bu for u E V as in S2, and p E R such 
that mv = pR (using SI). (Then v(b) = 1, E = v(p) and Bv = eN.) 

3. Compute a factorization fIfo fJ mod m v in (R/mv)[x], with fo, f, c R[x] 
and f, monic and irreducible in (R/m )[x]. 

4. Use Hensel's lemma to get a factorization f FoF1 mod m$f in (R/m ')[x], 
with Fo, F1 E R[x], F1 monic, and Fi fi mod m v. 



658 JOACHIM VON ZUR GATHEN 

5. Set k = deg Fl. For m = k, ..., n - 1 do steps 6 and 7. 
6. Consider the R-module M C Rm+n generated by 

{pNx': 0 < i < k) U (F1x': 0 < i < m + n - k}. 

Apply the short vector algorithm to find a short vector g E M. 
7. Compute the monic polynomial e1 = gcd(f, g) E K[x]. If e I * 1 and deg e 

< n, then return (e, a) with e = ae1, and stop. 
8. Return "f is irreducible". 

5.6. THEOREM. Assume that R is a ring with sufficient valuations, and f E R[x] of 
degree n is reducible. Then algorithm FACTOR returns a proper factor e E R[x] of 
a2f (with a E R as in S3). 

Proof. If e is returned from step 7, then there exists some monic u E K[x] such 
that f = lc(f )eIu. Then a2f = lc(f ) e au is a factorization in R[x]. All we have to 
show is that if f is reducible (in K[x]), then e is indeed returned from step 7. So we 
can assume that g0 E K[x] is a monic irreducible factor of f, g, = agO E R[x] and 
f, divides g, with precision E, i.e. f, mod p divides g, mod p in R/mv[x]. The fact 
that v (b) = 1 implies that f mod p is squarefree and gcd(fo, f,) 1 mod mv, and we 
can find s0e, sI E R[x] such that the conditions H1, H2, H3 of the Hensel lemma hold 
with z = 1, a = 1, 8 = E. Thus we can execute step 4, and the uniqueness property of 
Hensel's lemma (Corollary 2.9) implies that F1 divides g, with precision EN. 

As usual, we set q = 2 if w is Archimedean, and q = x otherwise. By Lemma 5.7 
below, we have 

wq(gl) = w(a)wq(go) < w(a)C. 

Consider now the module M in step 6 with m = deg g1, and the short vector g E M. 
Thus M consists of those polynomials in R[x] of degree < m + n which F1 divides 
with precision EN. In particular, g, E M and 

wq(g) < T(n + m)wq(gl) < w(a)Tr(2n)C. 

It follows that 

wq(f)mwq(g)' < wq(f) (w(a)T(2n)C)n < B 

and Lemma 5.5 (with F1 for h) implies that gcd(f, g) #1 in K[x]. O 
In the above proof, we used the following bound on factors of polynomials due to 

Mignotte [1974]. 

5.7. LEMMA. Let f, g E K[x] be monic, m = deg g, and 2 < q < x, and suppose 
that g divides f. Then 

wq(g) < w(2m)w2(f). 

If w is non-Archimedean, then 

WOO (g) < W.O (f ) 

Proof. We can assume f = (x - cl) (x - cn) with cl,.. ., cn E F, since w 
extends (nonuniquely) to a valuation on some splitting field of f over F. 
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If w is Archimedean, then F is a subfield of C and w the restriction of the absolute 
value (Ostrowski [1918]), and Mignotte [1974] proves that with g = E0<ivm g,x' we 
have 

W (g,) W2 (mf) 

for all i. Then 

w2 (f)(i (i)) 7) < W2(f) () = w2() 

If w is non-Archimedean, then wOO is a valuation on F[x], and 

w.(f) = w.(X - CO) 
... 

W(X - Cn) = W(C* Ck) 

if w(cl),..., w(ck) > 1 and W(Ck?+ ,), . . ., W(Cn) < 1. Vieta's expression of g, in terms 
of some of the c1 proves the claim. Li 

5.8. Remark. Let us estimate the running time of FACTOR. We will want to use 
the estimates in Proposition 2.10 and Theorem 4.8(ii). For those two estimates, 
however, different models were appropriate. In Proposition 2.10 we counted "basic 
operations"-essentially corresponding to bit operations if R = Z and to arithmetic 
operations in F if R = F[y] -and in Theorem 4.8 we counted arithmetic operations 
in R. Below, we outline an estimate for FACTOR in terms of both these counts. In 
order to establish an estimate in terms of "basic operations" only, one would first 
have to introduce bounds for the computations implicit in Definitions 4.1 and 5.1, 
and then bound the size of intermediate results. In specific examples (Z or F[y]) 
both steps are not too hard, but it is not clear which approach would make sense in 
the general setting. Thus we consider the procedures implied in Definition 5.1 as 
executed for free, and only count the arithmetic operations. They occur in steps 4, 6 
and 7. By Proposition 2.10, step 4 takes 0(n3NT(eN)) basic operations. For step 6, 
let us assume that there exist "small representatives" for R/m': for v E V, N E N, 
and a E R there exists b E R such that a bmod mf and w(b) < w(pv)N. Such 
representatives clearly exist in our two paradigms Z and F[y]. We can give a time 
estimate for step 6 only for non-Archimedean w, since we only presented a short 
vector algorithm for this case. Then for the generators of the module M in step 6, we 
have w(pNxi) = w(p)N and, using representatives as above, also w(Flx') = w(FI) 
s< w(p)N. It follows from Theorem 4.8 that step 6 can be performed in 
0(n4N log w(p)) operations in R. 

For the gcd in step 7, we can use a subresultant algorithm (Collins [1967], Brown 
[1971]) taking 0(n4) operations in R. 

5.9. Remark. It is easy to adapt the method to include the case of an algebraic 
number field K. Let R be its ring of integers, V the set of q-adic valuations, where 
q c R is a prime ideal, and let the finite set W consist of the Archimedean 
valuations on R which are obtained from the absolute value on C via the different 
complex and real embeddings of K. Again, a Gauss lemma holds (but is not trivial 
as in Z or F[y]), and also a product formula (see e.g. Trotter [1980]). Chistov- 
Grigoryev [1982], Landau [1982], and Lenstra [1982] have factoring algorithms over 
algebraic number fields. 
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5.10. Remark. In order to apply the algorithm, we assumed that the input 
polynomial f is squarefree. If we can compute the "squarefree factorization" of an 
arbitrary polynomial, then we can apply our factorization algorithm, and the answer 
furnished will easily yield the factorization of the original polynomial. Computing 
this squarefree factorization is easy in characteristic zero and over finite fields. (See 
Knuth [1981, 4.6.2].) 

In particular, one can effectively decide squarefreeness in characteristic zero 
provided that the arithmetic operations can be effectively executed. Things are 
different in positive characteristic. In the general case, computing the squarefree part 
of a polynomial boils down to computing pth roots in fields of characteristic p > 0. 
An adaptation of an argument by Frohlich and Sheperdson [1956] shows that any 
general answer will have to take the representation of the field into account: let 
S C N be recursively enumerable, but not recursive, and x, yo, Yl,... indeterminates 
over Z/2Z. Let R = (Z/2Z)[yo, yl,... ], and consider in the quotient field K of R 
the subfield F generated by {yi: i E N \ S) U {yi2: i E S). Any algorithm that 
decides for any i whether X2 - yi2 e F[x] is squarefree or not would yield an 
algorithm for deciding membership in S; hence no such algorithm exists. Note also 
that F is isomorphic to K, and it is easy to decide whether an f E K [x] is squarefree: 
we can assume that f E R [x] is primitive over R, and then f is squarefree if and only 
if gcd(f, af/ax) = 1 or there exists an i E N such that gcd(f, af/ay1) = 1. 

5.11. Remark. The factorization algorithm makes essential use of the interplay 
between two valuations v and w on a ring R. A natural problem in this context is 
approximation: given some a in the completion of R with respect to v, and 

, I 2 E- E R, find b, c E R such that v(ac - b) < - and w(b) < 6I, w(c) < 82. This 
question includes rational approximation of real numbers, conversion of Hensel 
codes (see,e.g.,Miola [1982]), and Pade approximation of formal power series. Does 
there exist a general approximation algorithm that solves both these cases? 
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